Work Function Tuning in Two-Dimensional MoS2 Field-Effect-Transistors with Graphene and Titanium Source-Drain Contacts
نویسندگان
چکیده
Based on the first principles calculation, we investigate the electronic band structures of graphene-MoS2 and Ti-MoS2 heterojunctions under gate-voltages. By simultaneous control of external electric fields and carrier charging concentrations, we show that the graphene's Dirac point position inside the MoS2 bandgap is easily modulated with respect to the co-varying Fermi level, while keeping the graphene's linear band structure around the Dirac point. The easy modulation of graphene bands is not confined to the special cases where the conduction-band-minimum point of MoS2 and the Dirac point of graphene are matched up in reciprocal space, but is generalized to their dislocated cases. This flexibility caused by the strong decoupling between graphene and MoS2 bands enhances the gate-controlled switching performance in MoS2-graphene hybrid stacking-device.
منابع مشابه
Field-effect transistors built from all two-dimensional material components.
We demonstrate field-effect transistors using heterogeneously stacked two-dimensional materials for all of the components, including the semiconductor, insulator, and metal layers. Specifically, MoS2 is used as the active channel material, hexagonal-BN as the top-gate dielectric, and graphene as the source/drain and the top-gate contacts. This transistor exhibits n-type behavior with an ON/OFF ...
متن کاملSwitching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers.
In this article, we study the properties of metal contacts to single-layer molybdenum disulfide (MoS2) crystals, revealing the nature of switching mechanism in MoS2 transistors. On investigating transistor behavior as contact length changes, we find that the contact resistivity for metal/MoS2 junctions is defined by contact area instead of contact width. The minimum gate dependent transfer leng...
متن کاملStatistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films.
Monolayer molybdenum disulfide (MoS2) with a direct band gap of 1.8 eV is a promising two-dimensional material with a potential to surpass graphene in next generation nanoelectronic applications. In this Letter, we synthesize monolayer MoS2 on Si/SiO2 substrate via chemical vapor deposition (CVD) method and comprehensively study the device performance based on dual-gated MoS2 field-effect trans...
متن کاملGate Tunable Transport in Graphene/MoS2/(Cr/Au) Vertical Field-Effect Transistors
Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS₂/(Cr/Au) vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr), the electrical transport in our Gr/MoS₂/(Cr/Au) vertical t...
متن کاملMoS₂ P-type transistors and diodes enabled by high work function MoOx contacts.
The development of low-resistance source/drain contacts to transition-metal dichalcogenides (TMDCs) is crucial for the realization of high-performance logic components. In particular, efficient hole contacts are required for the fabrication of p-type transistors with MoS2, a model TMDC. Previous studies have shown that the Fermi level of elemental metals is pinned close to the conduction band o...
متن کامل